Degradation Model of Bioabsorbable Cardiovascular Stents
نویسندگان
چکیده
This study established a numerical model to investigate the degradation mechanism and behavior of bioabsorbable cardiovascular stents. In order to generate the constitutive degradation material model, the degradation characteristics were characterized with user-defined field variables. The radial strength bench test and analysis were used to verify the material model. In order to validate the numerical degradation model, in vitro bench test and in vivo implantation studies were conducted under physiological and normal conditions. The results showed that six months of degradation had not influenced the thermodynamic properties and mechanical integrity of the stent while the molecular weight of the stents implanted in the in vivo and in vitro models had decreased to 61.8% and 68.5% respectively after six month's implantation. It was also found that the degradation rate, critical locations and changes in diameter of the stents in the numerical model were in good consistency in both in vivo and in vitro studies. It implies that the numerical degradation model could provide useful physical insights and prediction of the stent degradation behavior and evaluate, to some extent, the in-vivo performance of the stent. This model could eventually be used for design and optimization of bioabsorbable stent.
منابع مشابه
Thrombogenicity and early vascular healing response in metallic biodegradable polymer-based and fully bioabsorbable drug-eluting stents.
BACKGROUND Acute thrombogenicity and re-endothelialization represent clinically relevant end points pertaining to the safety of coronary stents, which have not been compared among biodegradable polymer-based drug-eluting metallic stents and fully bioabsorbable scaffolds to date. METHODS AND RESULTS We investigated comparative outcomes with respect to acute thrombogenicity and re-endothelializ...
متن کاملMechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents.
The aim of this study was to characterize the mechanical and self-expansion properties of braided bioabsorbable stents. In total four different stents were manufactured from PLLA fibres using a braiding technique. The changes in radial pressure stiffness and diameter recovery of the stents were determined initially, and after insertion and release from a delivery device. The braided stents were...
متن کاملThe Potential of Magnesium Alloys as Bioabsorbable / Biodegradable Implants for Biomedical Applications
The potential of magnesium alloys as bioabsorbable / biodegradable implants for biomedical applications has been extensively studied as emerging direction. This paper gives a review of current topics in this field. Research activities related to biomedical magnesium alloys have been pursued in two main directions, orthopedic and cardiovascular implants, by investigating different aspects of all...
متن کاملDrug-eluting stents in preclinical studies: updated consensus recommendations for preclinical evaluation.
Coronary drug-eluting stents are commonplace in clinical practice with acceptable safety and efficacy. Preclinical evaluation of novel drug-eluting stent technologies has great importance for understanding safety and possibly efficacy of these technologies, and well-defined preclinical testing methods clearly benefit multiple communities within the developmental, testing, and clinical evaluatio...
متن کاملA novel bioabsorbable drug-eluting tracheal stent.
OBJECTIVES/HYPOTHESIS Currently available silicone and metallic stents for tracheal stenosis are associated with problems of granulations, mucus trapping, and difficult removals. Our aim was to develop a novel bioabsorbable tracheal stent with mitomycin C (MMC) drug elution to circumvent such problems. STUDY DESIGN A randomized animal study. METHODS Twenty-five rabbits were randomly assigne...
متن کامل